Category Archives: Immunotherapy for Cancer

Swiss Group Studies Dendritic Cell Vaccines with Artificial Receptors

New Cancer Research Is Improving Treatment
New Cancer Research Is Improving Treatment

One of the challenges doctors face with cancer treatment is designing a program to meet a patient’s unique needs. Immunotherapy for cancer is helping to provide solutions to this problem, such as recent improvements to dendritic cell vaccines.

Immunotherapy: Priming the Body’s Immune System

While the body’s immune system is extremely capable when it comes to fighting viruses, bacteria and other invaders, cancer cells often demonstrate a remarkable ability to evade detection. Immunotherapy works by enhancing the immune system’s power to target and destroy cancer cells.

Dendritic cells are one of the immune system’s “messengers” that present antigens to killer T-cells for destruction. Researchers in Switzerland began looking for a way to improve the effectiveness of dendritic cell vaccines.

Helping the Immune System Recognize Cancer Cells

Prof. Michele De Palma and his team created artificial receptors known as EVIRs, which are inserted in dendritic cells extracted from a patient. Once reintroduced into the patient’s system, the EVIRs are engineered to recognize exosomes that transport molecules between cells, sometimes assisting in the spread of cancer.

As EVIRs capture exosomes, it allows dendritic cells to present antigens on their outer surface, simplifying recognition and attack by killer T-cells. De Palma and his team have dubbed this phenomenon “cross-dressing,” and they’re hoping that the process will improve the specificity of cancer treatment.

Issels®: A Successful Legacy of Immunotherapy for Cancer

At Issels®, we are exclusively focused on immunotherapy for cancer with patients who have advanced or therapy-resistant cancers. Contact us to learn more about our dendritic cell vaccines and other non-toxic, personally tailored immunotherapy treatment programs.

Personalized Dendritic Cell Vaccines As Effective Immunotherapy Make the News

Sharing the Opinions of the Future
Sharing the Opinions of the Future

One of the benefits of immunotherapy for cancer is that treatments can often be tailored to address a patient’s individual needs. Scientists in Switzerland have now developed a method of modifying dendritic cell vaccines that makes them easier to personalize.

Aiding the Body’s Own Immune Response

Dendritic cell vaccines are normally created by force-feeding dendritic cells with tumor antigens. Scientists at the Swiss Institute for Experimental Cancer Research have developed a modification that allows dendritic cells to acquire antigens from a patient’s tumor.

Prof. Michele De Palma, winner of the 2017 Swiss Cancer League award, led the team of researchers in creating an extracellular vesicle (EV)-internalizing receptor, referred to as EVIR. The EVIR has been optimized to enhance dendritic cells and their ability to selectively uptake cancer cell-derived EVs.

Antigen-laden exosomes and other extracellular vesicles are released by tumors in sizable quantities. The EVIR helps dendritic cells target the exosomes more precisely and present them to killer T-cells for a more efficient immune response.

Streamlining the Job of Dendritic Cells

De Palma explained the phenomenon of cross-dressing, in which dendritic cells display the acquired antigens directly on their surface. The process simplifies the immune response by eliminating the need for more complex interactions within the dendritic cell itself.

Dendritic Cell Vaccines and Immunotherapy for Cancer at Issels®

Dendritic cell vaccines are only one of the non-toxic cancer treatments available at Issels®. Our individually developed programs are created to maximize the ability of your own immune system to fight cancer.

Contact us to learn more about why Issels® has long been a groundbreaking leader in immunotherapy for cancer.

Seed Money from Give Hope Will Help to Fund Pancreatic Cancer Research

New Cancer Research Is Improving Treatment
New Cancer Research Is Improving Treatment

Nearly everyone in America has been touched by cancer, whether it’s through personal experience or that of a friend or family member. One woman literally turned her loss into hope for continued research in immunotherapy for cancer and other treatments.

Sorrow Gives Rise to Hope

Susan Hunt’s experience came when her best friend Beth was diagnosed with pancreatic cancer. Hunt mourned the time they lost together, but she challenged her grief into Give Hope, the all-volunteer group she founded to raise seed money for continued research into new treatments and possible cures.

When it comes to cancer research, scientists are faced with a catch-22: they need data to present to the big cancer foundations in order to secure research grants, but they require money to generate the data in the first place. Give Hope has provided major funding for pancreatic cancer studies at the University of Cincinnati.

“Bench to Bedside”

Dr. Syed Ahmad of UC’s Cancer Institute used the term “bench to bedside” to sum up the research process. Every idea begins on a laboratory bench, where it’s nurtured with time and resources until it ends up at a patient’s bedside.

According to Hunt, the seed money raised by Give Hope has generated nearly $2 million in pancreatic cancer research funding for UC. University officials explained that after three years, the Cancer Institute receives $35 for every one dollar in seed money.

Immunotherapy for Cancer: The Issels® Difference

Our individually developed cancer treatment programs are not clinical trials. We have had years of success treating patients of all ages with all types of cancer. Contact us for more information.

Using Viruses to Boost the Immune Response in Immunotherapy

Medical Research Has Validated that Immunotherapy Works to Fight Cancer
Medical Research Has Validated that Immunotherapy Works to Fight Cancer

When it comes to your health, viruses are usually thought of as something to avoid. New studies have shown that infecting tumors with viruses can actually boost the beneficial effects of immunotherapy for cancer.

Helping the Immune System Target Tumors

Your body’s immune system is the primary line of defense against invading cells. One of the barriers to successful cancer treatment has been the ability of cancer cells to evade detection, leaving them free to grow unchecked.

On the other hand, the immune system has an excellent ability to recognize viruses. Two separate studies show evidence that cancer-targeting viruses might be able to trigger an immune attack on tumors.

– A team in England injected nine brain tumor patients with a cancer-seeking virus. After the tumors were surgically removed, researchers discovered that the viruses had indeed reached their target, and there were signs that the viral infection caused an immune response.

– Researchers in Canada performed similar tests on mice with breast cancer. The virus was injected directly into the tumors, and while it had little effect on survival rates, the infected mice had fewer instances of tumors spreading.

Viruses and Immunotherapy for Cancer

Professor John Bell, senior author of the latter study, explained that the virus “raises a big red flag” to alert the immune system. He went on to say that the addition of a checkpoint inhibitor enables a full-force immune attack.

State-of-the-Art Immunotherapy Treatments at Issels®

The non-toxic, individually developed immunotherapy for cancer treatments at Issels® are directed at enhancing the power of your own immune system. Contact us to learn more about our integrative programs.

Properties of Breast Tissue May Play a Role in Cancer Progression

There is New Hope for Breast Cancer Treatment
There is New Hope for Breast Cancer Treatment

Doctors have found some success with immunotherapy for cancer during the late stages of the disease, but the mystery of what causes certain tumors to spread has remained unsolved. Scientists are now turning to a surprising source for information about breast cancer progression.

A Matter of Engineering?

Ovijit Chaudhuri, an assistant professor of mechanical engineering, has been working with researchers across campus exploring the mechanical properties of breast tissue and their role in cancer progression. According to Chaudhuri, evidence supporting this relationship has been accumulating over the last 20 years.

Questions being studied by the teams include:

– How does stiffness of breast tissue encourage the growth and spread of tumors? Chaudhuri’s group is culturing mammary cells inside a hydrogel and tuning its stiffness to determine how it affects the development of cancer cells.

– How do cancer cells find their way past the membrane surrounding breast tissue that is seemingly too dense to allow passage? Currently, the scientists theorize that the cells use a combination of enzymes and force to “cut” their way through.

– As surrounding tissue grows in stiffness over time, how do tumors find space to expand?

Mechanobiology: A Complementary Approach

This isn’t the first time that scientists have sought biological information from the field of engineering. The result is the hybrid science of mechanobiology, which studies the interactions of mechanical properties and biological processes.

Immunotherapy for Cancer: Treating Resistant Tumors

At Issels®, our non-toxic immunotherapy programs have helped patients with advanced and therapy-resistant cancers achieve long-term remission. Visit our website for more information about our successful history of personally tailored and integrative cancer treatment programs.

Immunotherapy Advances May Now Help Patients with Reoccurring Multiple Myeloma

Immunotherapy Can Expand Options for Those With Limited Cancer Treatment Options
Immunotherapy Can Expand Options for Those With Limited Cancer Treatment Options

One of the benefits of immunotherapy for cancer is that these treatments often have positive results where others have failed. Results of two recent studies show that immunotherapy has real possibilities for treating multiple myeloma.

What Is Multiple Myeloma?

Multiple myeloma is the second-most diagnosed form of blood cancer, just behind non-Hodgkin’s lymphoma. In patients with multiple myeloma, infection-fighting plasma cells grow out of control, causing bone tumors and chronic infections.

Immunotherapy for Cancer: A Promising Treatment for Multiple Myeloma?

In 2017, a research team from Abramson Cancer Center at the University of Pennsylvania conducted two separate studies involving patients with multiple myeloma that had proven resistant to other therapies.

Patients in the first study received a single dose of chemotherapy before being infused with CART-BCMA, a specific form of chimeric antigen receptor (CAR) T-cell therapy developed by Penn researchers in collaboration with Novartis. Results indicated that 64 percent of the group had a positive response.

In the second study, sponsored by GlaxoSmithKline, patients received an experimental monoclonal antibody known as GSK2857916. The drug specifically targets delivery of a chemotherapy drug directly to cancer cells. Overall response rate was 60 percent, with more than half the responding patients experiencing a greater than 90 percent reduction in myeloma protein levels.

Both treatments target BCMA, which is a protein expressed by multiple myeloma cells.

Issels®: The Leader in Immunotherapy for Cancer

Our non-toxic, individually developed immunotherapy programs boost your body’s immune system and its natural defense mechanisms. Contact us for more information about our success treating patients with advanced cancer that has resisted other forms of therapy.