Tag Archives: Immunotherapy for Cancer

Coley’s Toxin – the First Immunotherapy?

Coley's Toxin - the First Immunotherapy?
Coley’s Toxin – the First Immunotherapy?

When it comes to cancer treatment, immunotherapy is a hot buzzword right now, but it may not be as new as it seems. Many scientists believe that the first immunotherapy treatments date back to the late 1800s.

Coley’s Toxins: The Original Immunotherapy?

William Coley, a surgeon in turn-of-the-century New York, made a peculiar discovery about one of his patients. Fred Stein, who had been diagnosed with cancer, began making a recovery after contracting a serious infection.

Dr. Coley thought that perhaps bacteria from the infection jump-started Stein’s immune system, causing it to attack the tumors. This experience inspired the doctor to begin treating inoperable cancer patients with bacterial injections that came to be known as Coley’s toxins.

While Coley’s treatments did achieve some success, there was little documentation to support his findings. As a result, the doctor’s peers continued to favor radiation and chemotherapy as cancer treatments of choice.

A Man Ahead of His Time

For all intents and purposes, Dr. Coley’s methods died with him in 1936. Now, more than 80 years later, immunotherapy cancer treatment is “here to stay,” according to Jill O’Donnell-Tormey, chief executive of the Cancer Research Institute.

Immunotherapies known as checkpoint inhibitors are some of the top-selling drugs around the world. Checkpoint inhibitors follow Dr. Coley’s principle of boosting the body’s own immune response.

Dr. Josef M. Issels: A Pioneer of Immunotherapy

We’re proud to carry on the legacy of our founder, Dr. Josef M. Issels, who was also an early proponent of immunotherapy cancer treatment. Contact Issels® for more information about our individually created immunotherapy programs.

Ribosomes May be Hijacked to Protein Fuel for Cancers

It's Time to Stop Cancer
It’s Time to Stop Cancer

Cancer cells often have an uncanny ability to hijack the functions of normal body cells. Scientists have focused on this property in the belief that deciphering the process will lead to more effective cancer treatment.

Thanks to the results of a Yale University study, the scientific community may be a little closer to this goal. Discovery of unknown pathways to fuel sources provides insights into the development and growth of cancer.

How Cell Proteins Drive Cancer Growth

Organelles are specialized structures in cells that carry out certain tasks, much like organs do for the human body. One of these organelles, called the nucleolus, produces ribosomes, which in turn manufacture proteins.

Ribosomes can be hijacked by cancer cells to divert protein production in order to fuel cancer growth. In a study published in Cell Reports, Dr. Susan Baserga of Yale University and two of her graduate students screened 18,000 proteins that are vital to nucleoli formation.

A Target for Immunotherapy Cancer Treatment?

Dr. Baserga and her team found 139 proteins that serve as a type of master switching network. The proteins represent countless cellular pathways that control the production of ribosomes. This discovery clarifies the link between ribosomes and cancer as well as the one between ribosomes and certain birth defects known as ribosomopathies.

Personalized Cancer Treatment at Issels®

Our innovative cancer treatments target both the tumor and its microenvironment. Immunotherapy programs at Issels® are created specifically to address a patient’s individual needs.

Contact us to learn how our effective cancer treatments have helped patients whose advanced cancers were non-responsive to traditional therapies.

Seed Money from Give Hope Will Help to Fund Pancreatic Cancer Research

New Cancer Research Is Improving Treatment
New Cancer Research Is Improving Treatment

Nearly everyone in America has been touched by cancer, whether it’s through personal experience or that of a friend or family member. One woman literally turned her loss into hope for continued research in immunotherapy for cancer and other treatments.

Sorrow Gives Rise to Hope

Susan Hunt’s experience came when her best friend Beth was diagnosed with pancreatic cancer. Hunt mourned the time they lost together, but she challenged her grief into Give Hope, the all-volunteer group she founded to raise seed money for continued research into new treatments and possible cures.

When it comes to cancer research, scientists are faced with a catch-22: they need data to present to the big cancer foundations in order to secure research grants, but they require money to generate the data in the first place. Give Hope has provided major funding for pancreatic cancer studies at the University of Cincinnati.

“Bench to Bedside”

Dr. Syed Ahmad of UC’s Cancer Institute used the term “bench to bedside” to sum up the research process. Every idea begins on a laboratory bench, where it’s nurtured with time and resources until it ends up at a patient’s bedside.

According to Hunt, the seed money raised by Give Hope has generated nearly $2 million in pancreatic cancer research funding for UC. University officials explained that after three years, the Cancer Institute receives $35 for every one dollar in seed money.

Immunotherapy for Cancer: The Issels® Difference

Our individually developed cancer treatment programs are not clinical trials. We have had years of success treating patients of all ages with all types of cancer. Contact us for more information.

Properties of Breast Tissue May Play a Role in Cancer Progression

There is New Hope for Breast Cancer Treatment
There is New Hope for Breast Cancer Treatment

Doctors have found some success with immunotherapy for cancer during the late stages of the disease, but the mystery of what causes certain tumors to spread has remained unsolved. Scientists are now turning to a surprising source for information about breast cancer progression.

A Matter of Engineering?

Ovijit Chaudhuri, an assistant professor of mechanical engineering, has been working with researchers across campus exploring the mechanical properties of breast tissue and their role in cancer progression. According to Chaudhuri, evidence supporting this relationship has been accumulating over the last 20 years.

Questions being studied by the teams include:

– How does stiffness of breast tissue encourage the growth and spread of tumors? Chaudhuri’s group is culturing mammary cells inside a hydrogel and tuning its stiffness to determine how it affects the development of cancer cells.

– How do cancer cells find their way past the membrane surrounding breast tissue that is seemingly too dense to allow passage? Currently, the scientists theorize that the cells use a combination of enzymes and force to “cut” their way through.

– As surrounding tissue grows in stiffness over time, how do tumors find space to expand?

Mechanobiology: A Complementary Approach

This isn’t the first time that scientists have sought biological information from the field of engineering. The result is the hybrid science of mechanobiology, which studies the interactions of mechanical properties and biological processes.

Immunotherapy for Cancer: Treating Resistant Tumors

At Issels®, our non-toxic immunotherapy programs have helped patients with advanced and therapy-resistant cancers achieve long-term remission. Visit our website for more information about our successful history of personally tailored and integrative cancer treatment programs.

Monumental Advances in the Treatment of Bladder Cancer

There is New Hope for Bladder Cancer Treatment
There is New Hope for Bladder Cancer Treatment

When it comes to immunotherapy cancer treatment, checkpoint inhibitors have been a major game-changer. 2017 alone saw five approvals for checkpoint inhibitors that greatly advanced treatment for bladder cancer.

Bladder Cancer Treatment: The Year in Review

During the Society of Urologic Oncology’s annual meeting in late 2017, speaker Elizabeth Plimack, M.D., recapped the year’s highlights in bladder cancer treatments.

– The good news began in February, with the approval of Opdivo for second-line treatment of bladder cancer as a follow-up to platinum-containing therapy.

– After approval in 2016 as a second-line treatment, Tecentriq was granted approval as a front-line treatment in April 2017.

– May 2017 brought about approvals for three more treatments: Imfinzi, Bavencio and Keytruda.

As Plimack stated during her presentation, these approvals demonstrate that checkpoint inhibitors are “here to stay.”

What Lies Ahead?

One area that needs more research is how to be more accurate in choosing patients who will be most receptive to these treatments. Other features that require further studies include duration of response, delayed toxicities and overcoming resistance.

Plimack’s comments included cautioning against extrapolating the data to patients who are eligible for cisplatin, which is a form of chemotherapy. As Plimack explained, more trials are needed before checkpoint inhibitors are approved to replace cisplatin as first-line treatments.

Issels®: Immunotherapy Treatment for Advanced Cancers

We have a successful track record of providing cancer treatment that helps patients achieve long-term remission, even in advanced and therapy-resistant cases. Visit our website to hear and read testimonials from patients of all ages with various forms of cancer who have been treated at Issels®.

Some Types of Immunotherapy Can Cause Serious Side Effects

Some Types of Immunotherapy Can Cause Serious Side Effects
Some Types of Immunotherapy Can Cause Serious Side Effects

In 2017, the Food and Drug Administration (FDA) approved two new forms of cancer immunotherapy for use with certain types of blood cancer. While these treatments show great promise, scientists are also working to control their potential side effects.

Cancer Immunotherapy and CAR T-cells

Kymriah from Novartis is designed to treat a form of leukemia known as ALL, which is the most common cancer that affects children. The other new treatment, Kite Pharma’s Yescarta, is for non-Hodgkin’s lymphoma.

Both treatments incorporate CAR T-cell therapy, which uses the power of the body’s immune system. Specialized white blood cells known as T-cells are removed from a patient’s body and engineered to include a receptor designed to identify and attack cancer cells. The “new” cells are replicated and reintroduced to the patient’s system.

Dealing with Side Effects

Kymriah and Yescarta are one-time-only procedures that don’t have the common side effects normally associated with chemotherapy and radiation. But scientists have discovered that the treatments have some potential side effects of their own.

CAR T-cell therapy essentially supercharges the immune system, which can result in cytokine-release syndrome. The cells under attack release proteins called cytokines, setting off a massive inflammatory response including extreme fevers and seriously low blood pressure.

Fortunately, the side effects can be managed in a hospital or clinical setting. Researchers are seeking a way to make the therapies useable in a variety of settings.

State-of-the-Art Cancer Immunotherapy from Issels®

Our non-toxic, personalized cancer immunotherapy programs have helped numbers of patients achieve and maintain long-term remission. Contact us to learn more about Issels® and our record of successful cancer treatment.